If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2+30x=0
a = 50; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·50·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*50}=\frac{-60}{100} =-3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*50}=\frac{0}{100} =0 $
| 4-2x=56 | | 42=3n+6 | | 2p-p+2+2-4p=20 | | 38=17+3x | | 38=17-3w | | 14d-10d-7d+2d+2d=18 | | 17.9+v=35.8;v=17.9 | | 7(2n+1)=21 | | 10t+2t-6t=12 | | 4m+6m-9m=14 | | x^2+2x+2=-x^2+2x+20 | | -(1+7y)+2y=-11 | | 17h-3h-9h-2h=15 | | 0=(2x-3)(3x-5) | | 78=5r+28 | | -9+k=12. | | 3/2x-2=1/2x | | -1+7y+2y=11 | | t-(-2)=6. | | 5x²-250=0 | | 24-2z=12 | | y+2.8=-12.5 | | 24−2z=12 | | -36=-6b. | | 135+6x-3=180 | | 6b-(-15)-(-3b)+20b=14 | | a^2+289=324 | | 5+6n=65 | | 50x-30=15x+20 | | 2m+4m=42 | | (8x+5)+(12x+55)=180 | | 10h-h-9h+h=6 |